ASO/siRNA/CRISPR-Cas9 vs. Antibodies for TTR Cardiac Amyloidosis

The Revolution in Pharmacotherapy: From Herbs to Pills to Antibodies and Nucleic Acids

Mat Maurer, MD

February 1, 2024

Disclosures

I am excited about all the progress in the arena of TTR amyloidosis but concerned about the high cost of therapy which is unsustainable.

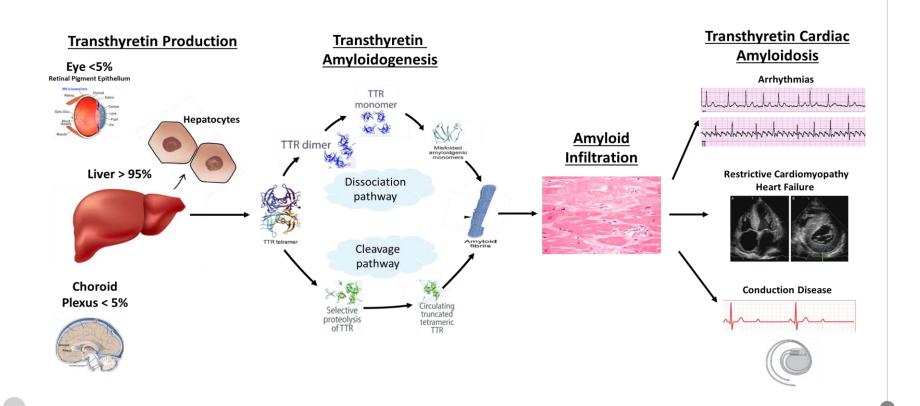
I have research and grant support from several pharmaceutical companies:

-NIH/NIA/NHLBI

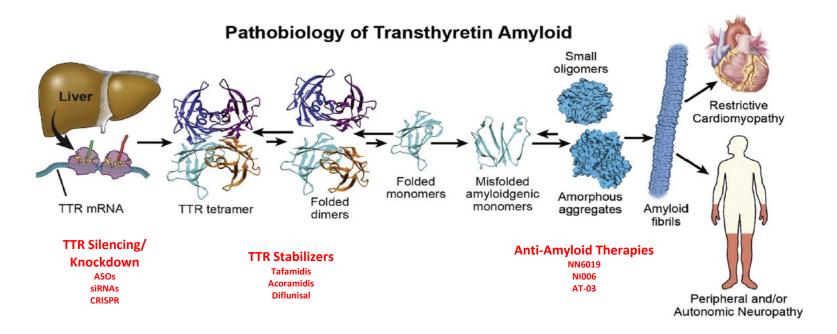
-Eidos

-Intellia

-Novo-Nordisk


-Attralus, Inc

-Ionis Pharmaceuticals


-Alnylam, Inc

-Pfizer, Inc.

Biology Underlying Transthyretin Cardiac Amyloidosis® ESC

Therapies for transthyretin amyloidosis have emerged from elucidation of underlying biology

J Am Coll Cardiol. 2019;73:2872-91.

Tafamidis for Transthyretin Cardiac Amyloidosis

Tafamidis

Binds to TTR, stabilizes it an prevents amyloidogenesis.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Tafamidis Treatment for Patients with Transthyretin Amyloid Cardiomyopathy

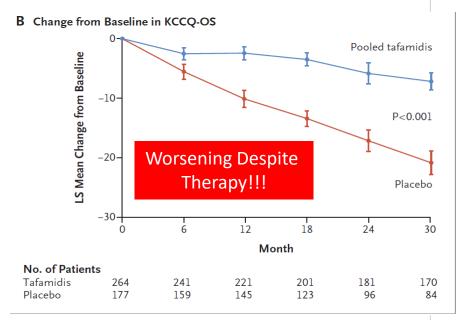
Mathew S. Maurer, M.D., Jeffrey H., Schwartz, Ph.D.,
Balarama Gundapaneni, M.S., Perry M. Elliott, M.D.,
Giampaolo Merlini, M.D., Ph.D., Marcia Waddington-Cruz, M.D.,
Arnt V. Kristen, M.D., Martha Grogan, M.D., Ronald Witteles, M.D.,
Thibaud Damy, M.D., Ph.D., Brian M. Drachman, M.D., Sanjiv J. Shah, M.D.,
Mazen Hanna, M.D., Daniel P. Judge, M.D., Alexandra I. Barsdorf, Ph.D.,
Peter Huber, R.Ph., Terrell A. Patterson, Ph.D., Steven Riley, Pharm.D., Ph.D.,
Jennifer Schurnacher, Ph.D., Michelle Stewart, Ph.D., Marla B. Sultan, M.D., M.B.A.,
and Claudio Rapezzi, M.D., for the ATTR-ACT Study Investigators*

33% reduction in overall mortality – need to treat 7-8 patients to prevent one death over 2 ½ years

32% reduction in the rate of hospitalization with tafamidis compared with placebo – need to treat 4 patients to prevent 1 hospitalization per year.

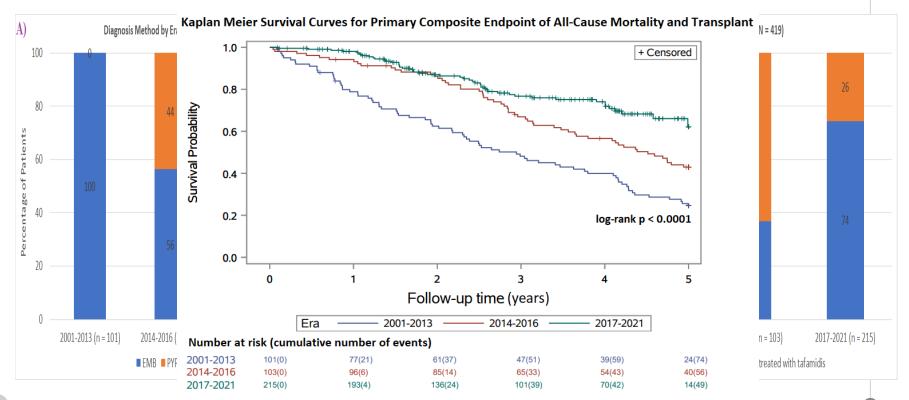
Amyloid. 2006 Dec;13(4):236-49
N Engl J Med. 2018 Sep 13;379(11):1007-1016.

Despite Efficacy – Still high residual Mortality and Morbidity


Mortality

No. at Risk (cumulative no. of events)

Pooled tafamidis 264 (0) 259 (5) 252 (12) 244 (20) 235 (29) 222 (42) 216 (48) 209 (55) 200 (64) 193 (71) 99 (78) 0 (78) Placebo 177 (0) 173 (4) 171 (6) 163 (14) 161 (16) 150 (27) 141 (36) 131 (46) 118 (59) 113 (64) 51 (75) 0 (76)


Morbidity

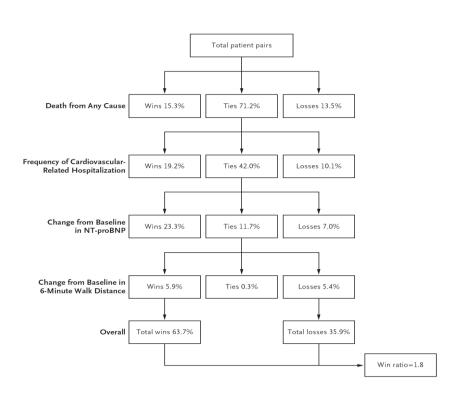
Months since First Dose

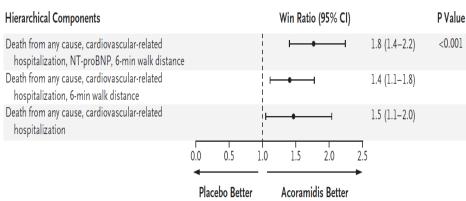
Improving Outcomes over Time: Attributable to Increasing Awareness, Early Diagnosis & Effective Therapy

Chan N, ... Maurer M. Journal of Cardiac Failure, accepted

Tafamidis with Earlier Diagnosis Greater Efficacy Over Time in the Real World

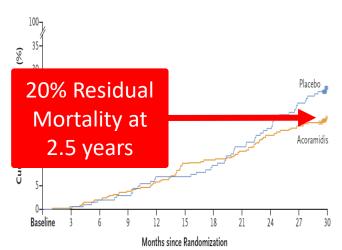
	Tafamidis (n=201)		No Tafamidis (n=91)					
Variable	N	Total events	Events rate, per 100 person-years (95% CI)	N	Total events	Events rate, per 100 person-years (95% CI)	Event rate ratio (95% CI)	p-value
Death	201	24	4.5 (3-6.7)	91	35	16 (11.4-22.4)	0.3 (0.2-0.5)	<.001
All Cause Hospitalization	201	372	70 (58.8-83.4)	91	229	112.5 (87.2-145.1)	0.6 (0.5-0.8)	0.003
CV Hospitalization	201	211	40.2 (32.3-50)	91	148	76 (55.8-103.6)	0.5 (0.4-0.8)	<.001
Non-CV Hospitalization	201	149	27.7 (22.3-34.4)	91	80	36.2 (26.4-49.5)	0.8 (0.5-1.1)	0.17


ATTRibute-CM and ATTR-ACT Trials



Parameter	ATTR-ACT (n=441)	ATTRibute-CM (n=632)
Age	74±7	77±7
Gender (% Male)	90.2%	90.2%
Race (% Black)	14.3%	4.7%
TTR genotype -ATTRwt -ATTRv	76% 24%	90.3% 9.7%
NYHA class Class I Class II Class III	8.3% 59.6% 31.9%	10.8% 72% 17.2%
NTproBNP (pg/ml)	3,078	2,325

ATTRibute-CM Study of Acoramidis

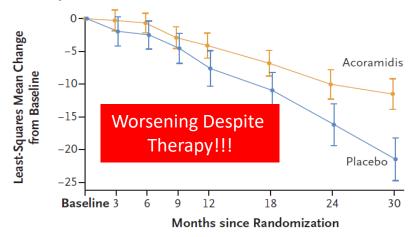

Still Unmet Needs -**Even in Less Advanced Disease**

405

201

Mortality

E Death from Any Cause

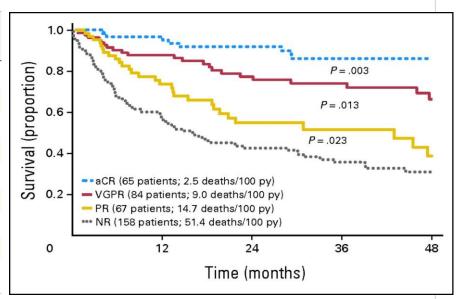


No. at Risk (no. of events)

393 (16) 385 (24) 369 (40) 365 (44) 358 (51) 344 (65) 336 (73) 0 (79) 196 (6) 188 (14) 188 (14) 183 (19) 175 (27) 166 (36) 156 (46) 0 (52)

Morbidity

Change in Kansas City Cardiomyopathy Questionnaire-Overall **Summary Score**



No. at Risk

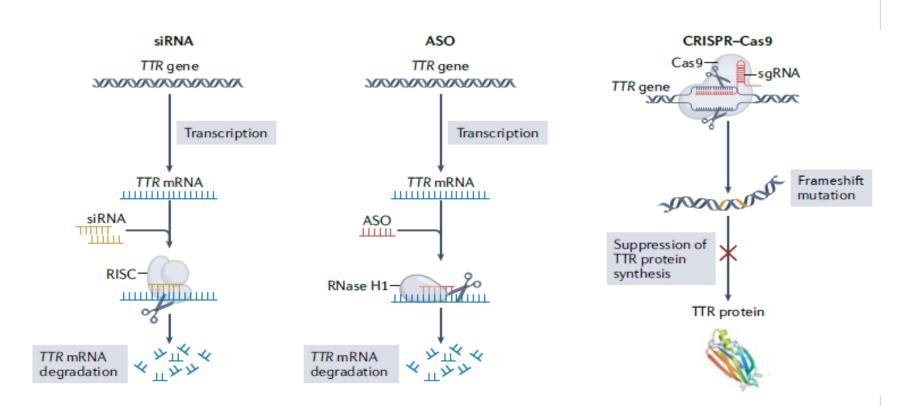
Acoramidis	408	263	389	390	397	404	407
Placebo	202	134	192	194	196	199	201

Reductions in the Precursor Protein in other **©**ESC forms of Amyloidosis are key to therapeutic success

Table 3. Unadjusted Relative Risk of Death Associated with the Most Recent Median Annual SAA Concentration during Follow-up.*					
SAA Octile (mg/liter) Relative Risk (95% CI) P Value					
<4	1.0				
≥4 to <9	3.9 (1.5–10.4)	0.007			
\geq 9 to <16.7	5.1 (2.7–9.4)	0.003			
\geq 16.7 to <28	7.0 (3.7–13.4)	0.07			
≥28 to <45.6	9.1 (4.8–17.2)	0.008			
≥45.6 to <87	12.1 (6.9–21.4)	< 0.001			
≥87 to <155	17.0 (8.6–33.8)	< 0.001			
≥155	17.7 (8.7–36.0)	< 0.001			

N Engl J Med. 2007 Jun 7;356(23):2361-71; J Clin Oncol. 2012 Dec 20;30(36):4541-9.

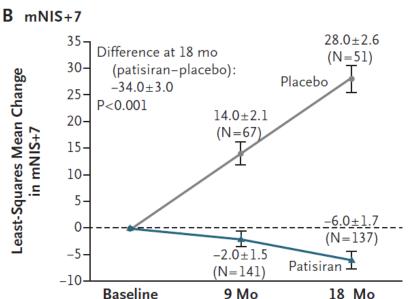
Unmet Needs and the Development of **©**ESC

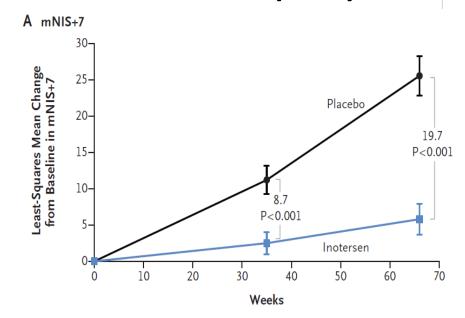


Additional therapies

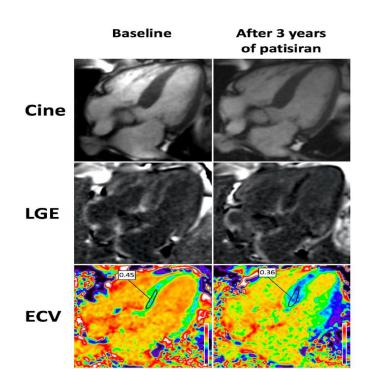
Therapy	Trial	Mechanism	Route	N
Patisiran	APOLLO-B	Silencer (siRNA)	IV Q3 weeks	360
Vutrisiran	Helios-B	Silencer (siRNA)	SQ Q3 months	655
Eplontersen	Cardio TTRansform	Silencer (ASO)	SQ Q1 month	1,400
NTLA-2001	Magnitude	Gene Editing (CRISPR)	IV once	Initiated
ALX-ALXN2220	Depleter	Anti-amyloid Antibody	IV monthly	Phase 3 Initiation in Q1 2024
NN6019	Depleter	Anti-amyloid Antibody	IV monthly	Phase 2 Underway

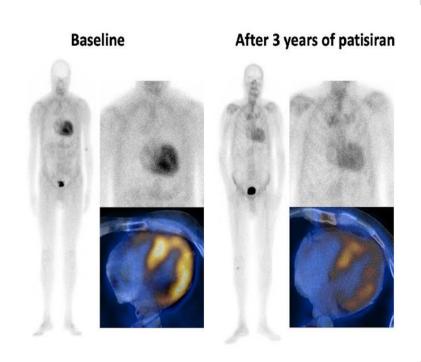
Approaches to Transthyretin Silencing (Knockdown) **©**ESC



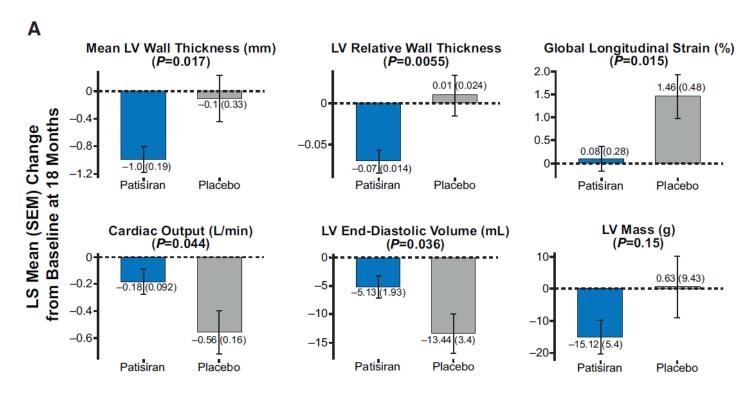

Efficacy of siRNA and ASO in ATTRV Amyloid Polyneuropathy

Patisiran (siRNA)

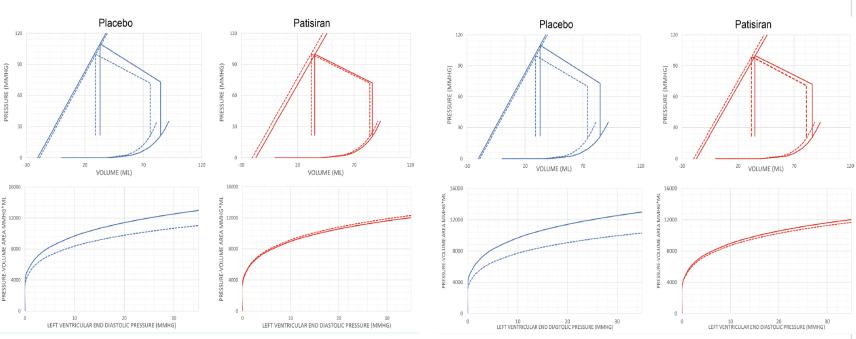



Inotersen (ASO)

Efficacy of Patisiran, an siRNA, in ATTR-CA



Patisiran, a siRNA, has favorable effects on Cardiac Parameters in Patients With ATTRv Amyloidosis



Patisiran in ATTRv Patients – Maintenance of Ventricular Capacitance

Changes after 9 Months

Changes after 18 Months

Eur J Heart Fail. 2023 May;25(5):727-736.

Study Design: Patisiran Phase 3 Study:

Randomized, Double-Blind, Placebo-Controlled Study in Patients with ATTR Amyloidosis with Cardiomyopathy

Patient population, N=360

- ATTR amyloidosis; wt or any TTR mutation
- Confirmed cardiomyopathy and medical history of symptomatic heart failure
- NYHA ≤III; minimum walk and NT-proBNP limits at baseline
- ≤30% on background tafamidis at baseline^a

Patisiran 0.3 mg/kg IV Q3Wb Or Placebo IV Q3Wb

Stratification:

Baseline tafamidis (yes or no); hATTR vs wtATTR amyloidosis; NYHA Class I/II and age <75 years vs all others

Patisiran vs Placebo

Primary endpoint

Change in 6-MWT at Month 12

Secondary endpoints

- Cardiomyopathy symptoms and health status (KCCQ-OS) at Month 12
- Death and hospitalization outcomes over 12 months^c

Selected exploratory endpoints

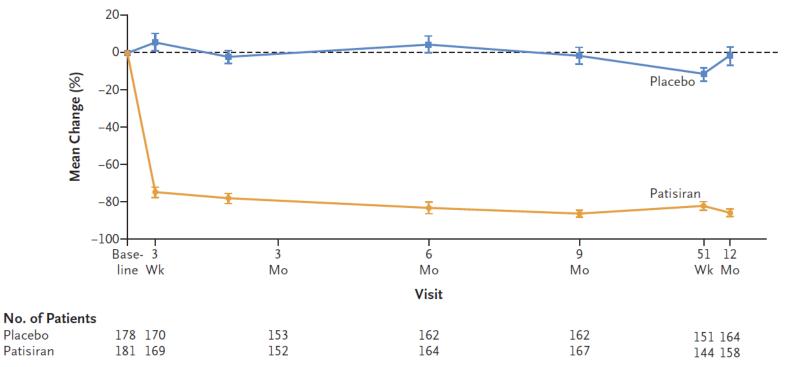
 E.g., Cardiac biomarkers (NT-proBNP, Troponin I), imaging

Open-label extension

APOLLO-B: Baseline Demographics

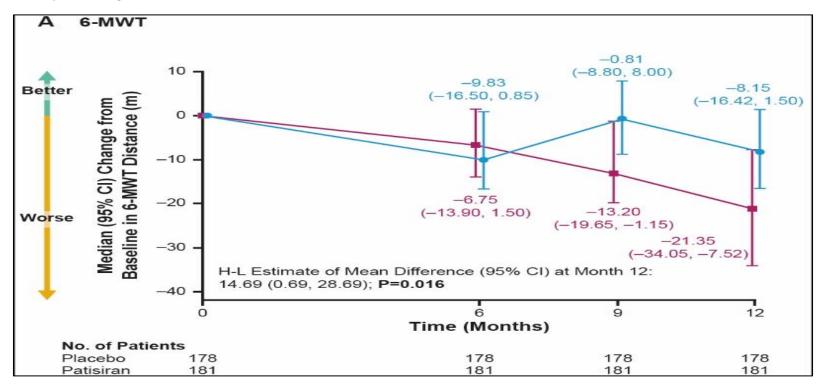
	Patisiran N = 181	Placebo N = 178
Median Age at Screening, years (min, max)	76 (47, 85)	76 (41, 85)
≥ 75 years old	59%	57%
Male	89%	90%
Race		
White	76%	79%
Asian	13%	8%
Black or African American	9%	8%
Other or Not reported	2%	4%
Hispanic or Latino	12%	11%
Region		
North America	25%	29%
Western Europe	39%	38%
ROW	37%	33%

APOLLO-B: Clinical Characteristics at Baseline


		Patisiran N = 181	Placebo N = 178	
ATTD amulaidasia tuna	wtATTR	80%	81%	
ATTR amyloidosis type	hATTR 20%		19%	
Median time since diagno	sis, years (min, max)	· ,		
Baseline tafamidis use		25%	25%	
	I	6%	8%	
NYHA class	II	86%	84% 7%	
	III	8%		
Median NT-proBNP, ng/L	(Q1, Q3)	2008 (1135, 2921)	1813 (952, 3079)	
Median baseline 6MWT, m	neters (Q1, Q3)	358 (295, 420)	368 (300, 444)	
Mean baseline KCCQ-OS	Score (SEM)	69.8 (1.6)	70.3 (1.6)	

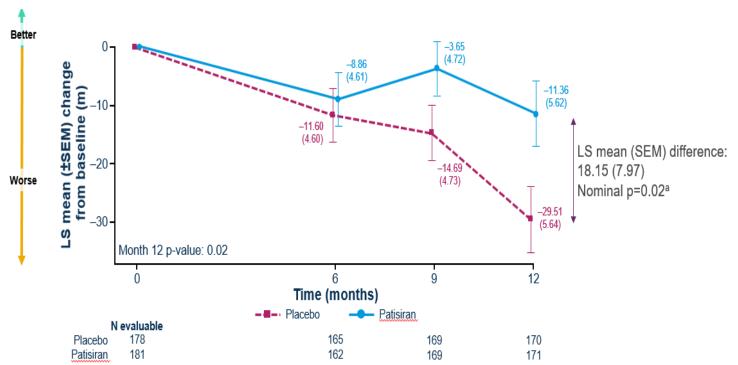
Rapid and Sustained Serum TTR Reduction:

Patisiran achieved a mean (SD) percent reduction in serum TTR of 86.8% (13.6) at Month 12


N Engl J Med. 2023 Oct 26;389(17):1553-1565

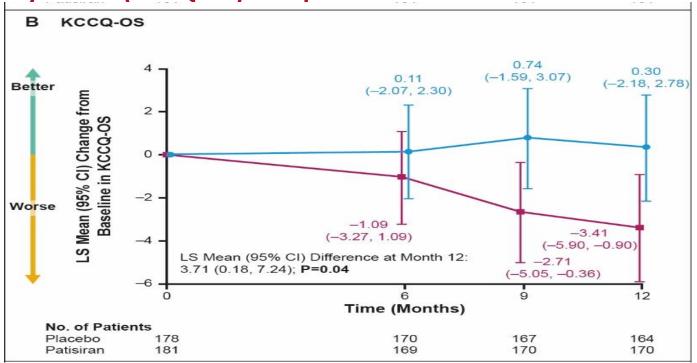
Placebo

Primary Endpoint:


Patisiran Demonstrated Significant Benefit in Functional Capacity (6-MWT) Compared to Placebo at Month 12

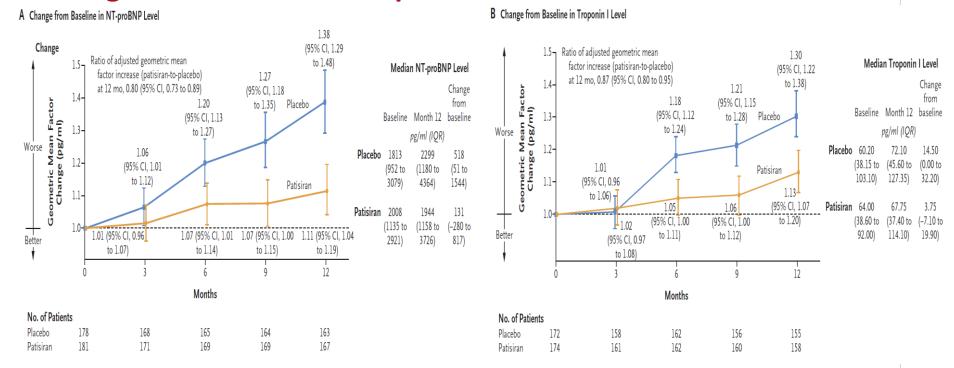
Sensitivity Analysis:

Confirms Robustness of the Observed Benefit in 6-MWT with Patisiran Compared to Placebo

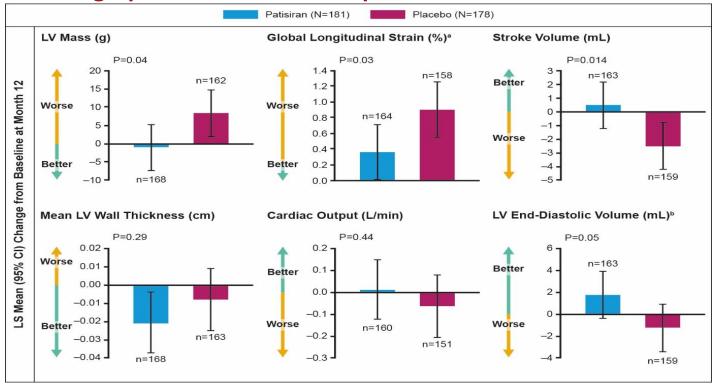


N Engl J Med. 2023 Oct 26;389(17):1553-1565

Secondary Endpoint:

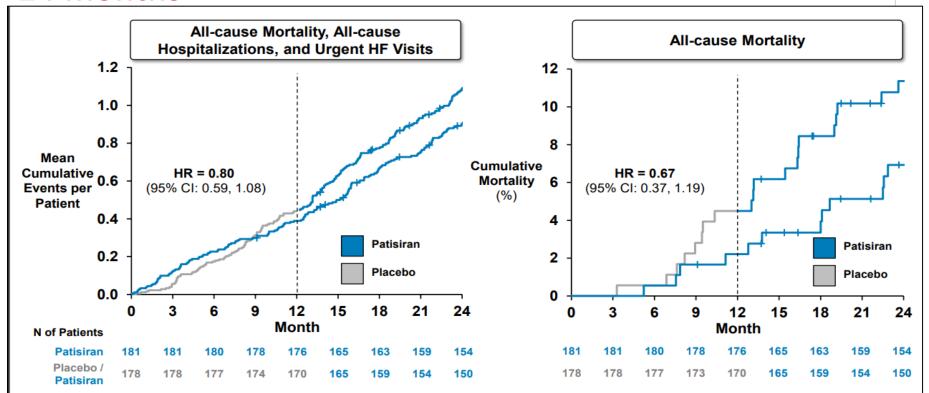

Patisiran Demonstrated Significant Clinical Benefit in Health Status and Quality of Life (KCCQ-OS) Compared to Placebo at Month 12

Exploratory Endpoint:


Patisiran Demonstrated Benefit in NT-proBNP and Troponin Change from Baseline Compared to Placebo at Month 12

Exploratory Endpoints:

Patisiran Demonstrated Evidence of Favorable Changes from Baseline of Most Echocardiographic Parameters Compared to Placebo at Month 12



N Engl J Med. 2023 Oct 26;389(17):1553-1565

Fewer Events in Patisiran Arm in APOLLO-B through

24 months

APOLLLO-B: 24 months data Functional Capacity, and Health Status and QOL

Figure 2. Mean Change from Baseline in 6MWT over 24 Months

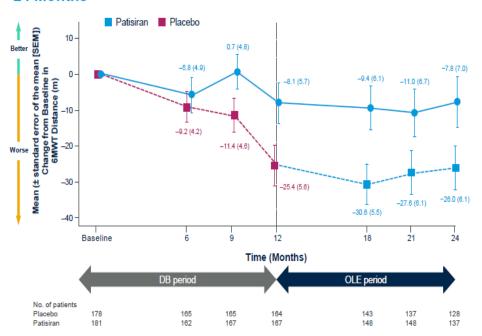
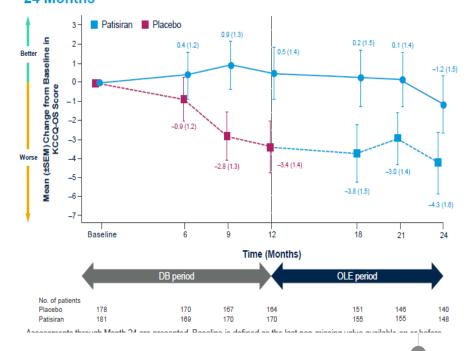
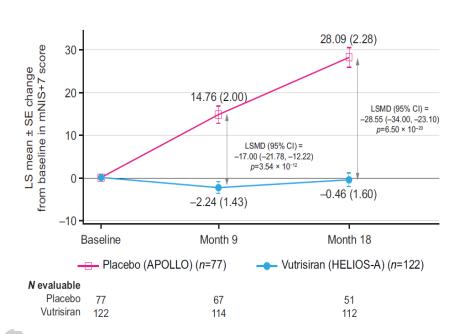
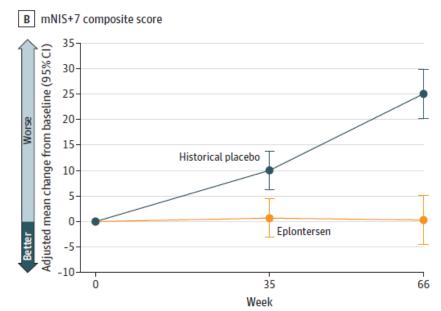



Figure 3. Mean Change from Baseline in KCCQ-OS over 24 Months

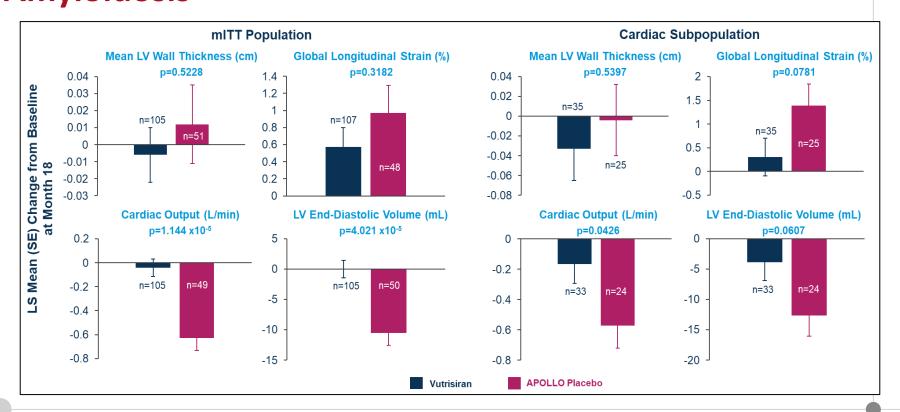


Next Generation Silencers –

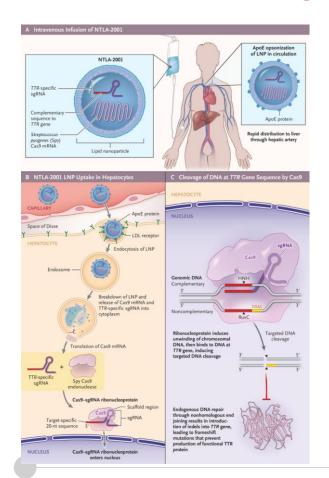


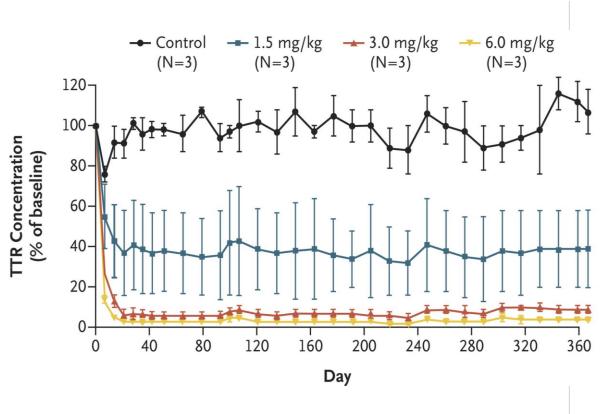
Vutrisiran and Eplontersen

Helios A - Vutrisiran


NEURO-TTRansform - Eplontersen

Amyloid. 2023 Mar;30(1):1-9.


JAMA. 2023;330(15):1448-1458


Effects of Vutrisiran on Cardiac Parameters in ATTRv © ESC Amyloidosis

TTR Gene Editing via CRISPR-Cas9

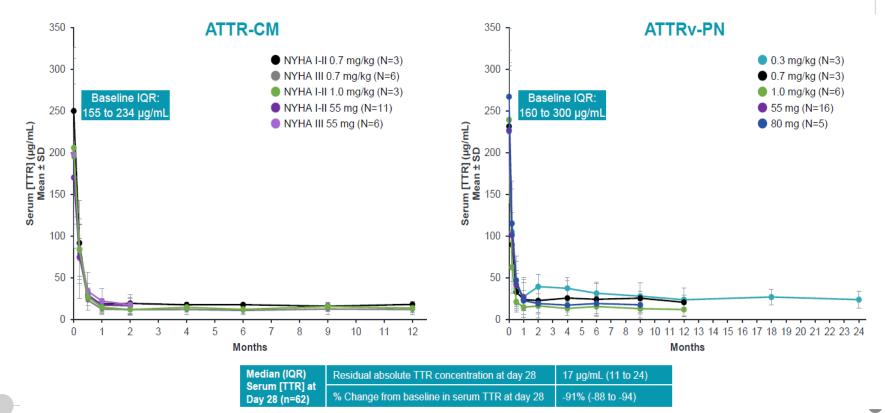
N Engl J Med 2021;385:493-502

TTR Gene Editing via CRISPR-Cas9 Phase 1 Patients

Characteristic		PN Patients (N=36)	CM Patients (N=29)	All Patients (N=65)
Age, years	Median (min, max)	61 (19, 75)	78 (46, 86)	68 (19, 86)
Sex, n (%)	Male	26 (72)	28 (97)	54 (83)
Weight, kg	Median (min, max)	77 (55, 117)	82 (63, 115)	81 (55, 117)
	p.V50M	11 (31)	0	11 (17)
	p.V142I	1 (3)	6 (21)	7 (11)
	p.T80A	7 (19)	1 (3)	8 (12)
TTR genotype, n (%)	p.S97Y	7 (19)	0	7 (11)
	p.E62D	4 (11)	0	4 (6)
	Other	6 (17)	2 (7)	8 (12)
	WT	0	20 (69)	20 (31)
	No diagnosis of heart failure	12 (33)	0	12 (18)
	ı	19 (53)	3 (10)	22 (34)
NYHA Class, n (%)	II	5 (14)	14 (48)	19 (29)
	III	ò ´	12 (41)	12 (18)
NT-proBNP, ng/L	Median (min, max)	127 (<50, 1878)	1845 (851, 19,624)	757 (<50, 19,624)

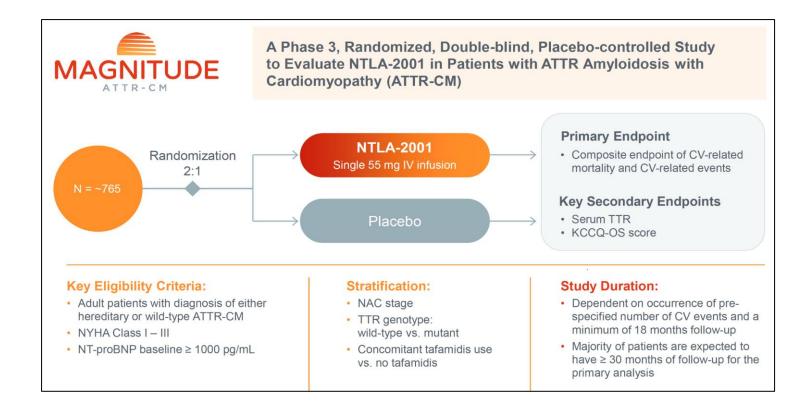
TTR Gene Editing via CRISPR-Cas9 Phase 1 – Adverse Events

TEAEs by Maximum Toxicity Grade and Preferred Term Reported in >5% of All ATTRy-PN and ATTR-CM Patients (N=65)

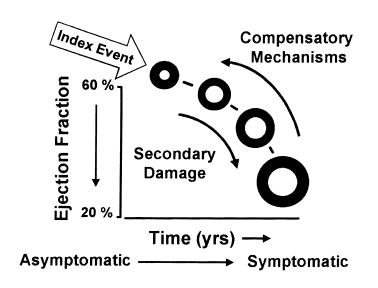

of All All RV-PN and All R-CW Patients (N=65)						
AE, Preferred Term, n (%)	Any Grade	Grade 1	Grade 2	Grade ≥3		
Infusion-related reaction	25 (38)	10 (15)	14 (22)	1 (2)		
Headache	12 (18)	12 (18)				
Diarrhea	11 (17)	10 (15)	1 (2)			
Back pain	7 (11)	7 (11)				
COVID-19 infection	6 (9)	5 (8)	1 (2)			
Cardiac failure	6 (9)	2 (3)	2 (3)	2 (3)		
Upper respiratory tract infection	6 (9)	6 (9)				
AST increased	5 (8)	3 (5)	1 (2)	1 (2)		
Dizziness	5 (8)	5 (8)				
Fatigue	5 (8)	5 (8)				
Muscle spasms	5 (8)	4 (6)	1 (2)			
Vision blurred	5 (8)	5 (8)				
Atrial flutter	4 (6)		1 (2)	3 (5)		
Constipation	4 (6)	2 (3)	2 (3)			
Rash	4 (6)	4 (6)				

- This includes all reported events, including those unrelated to NTLA-2001 (e.g., atrial flutter and cardiac failure hospitalizations)
- Infusion-related reactions were most common; nearly all were considered mild and resolved without sequelae, and all patients received the complete, planned dose
- Any liver enzyme elevations resolved spontaneously, were asymptomatic, and required no intervention (e.g., steroids) or hospitalization

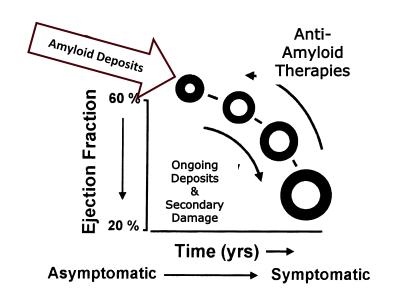
Data cutoff May 11, 2023.


TTR Gene Editing via CRISPR-Cas9 Phase 1 – Sustained TTR Knockdown

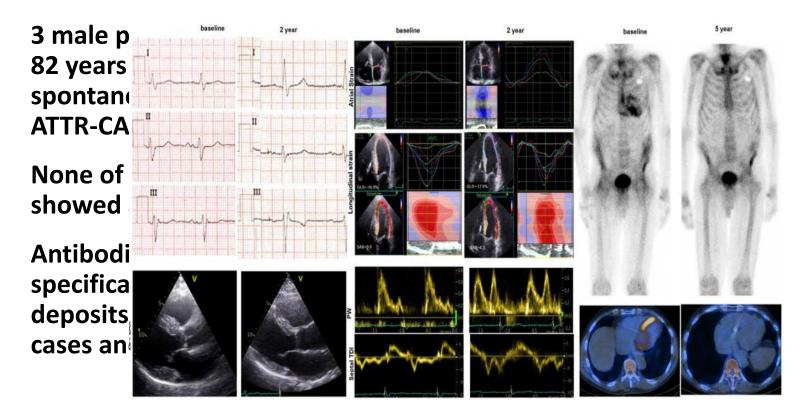
Magnitude – Phase 3 Trial of CRISPR in ATTR-CA



Progression of HF in Cardiac Amyloidosis:

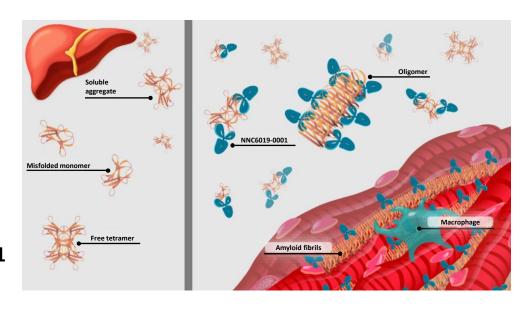

Potential Role of Anti-Amyloid Therapy

Classic Paradigm of HF



Emerging Paradigm in Amyloidosis

Antibody-Associated Reversal of ATTR-CA


Anti-Amyloid Therapies

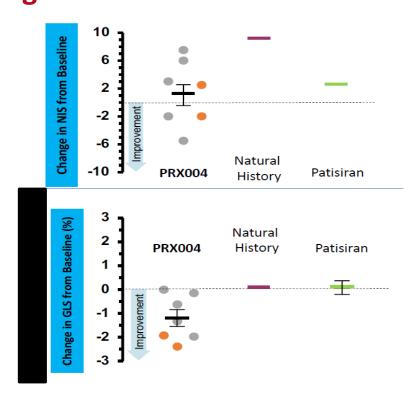
Name of Drug	Type of Amyloidosis	Phase of Study	Sponsor
NEOD001 (Birtamimab)	AL	3	Prothena
CAEL-101 (Anselamimab)	AL	3	Alexion
NNC6019 (PRX004)	ATTR	2	Novo-Nordisk
ALX2220 (NI006)	ATTR	3	Alexion
AT-02	AL, ATTR, others	1	Attralus

NNC6019-0001 (formerly PRX004) Mechanism of action

- NNC6019-0001 is a a humanized monoclonal antibody that targets an epitope of TTR that is exposed on monomeric, misfolded and aggregated forms of TTR, but hidden in native TTR tetramers.
- Through antibody-mediated phagocytosis, NNC6019-0001 depletes TTR amyloid deposits. In addition, it may prevent TTR amyloid formation.

Higaki JN et al. Amyloid 2016;23:86-97

NNC6019-0001 (Novo Nordisk) (PRX004; Prothena): A monoclonal antibody that targets misfolded TTR



Showed neurologic and cardiac benefit in a small phase 1 study in patients with ATTR amyloidosis.

At 9 months, neuropathy progression (measured by NIS) slowed in 7/7 evaluable patients compared with natural history

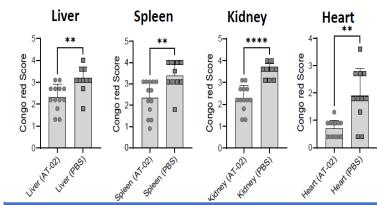
Cardiac systolic function (measured by GLS) improved in 7/7 evaluable patients compared with untreated patients

Phase 2 trial underway

https://s201.q4cdn.com/351053094/files/doc_presentations/2021/04/1/AAN-PRX004-Ph1_20March21-

AT-02: IgG1-peptide fusion with pan-amyloid reactivity ESC Binds to all types of amyloid

A humanized IgG1-peptide fusion reagent

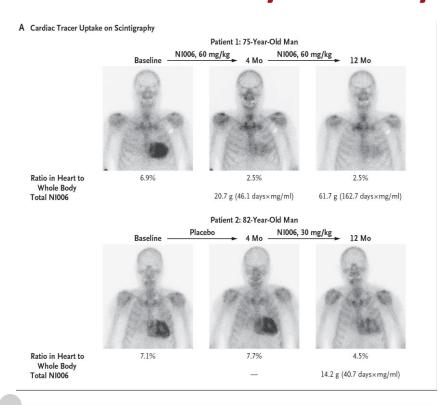

The pan-amyloid reactive peptide p5R, which binds to amyloid fibrils by electrostatic interactions, is fused to the C-terminal of the light chain

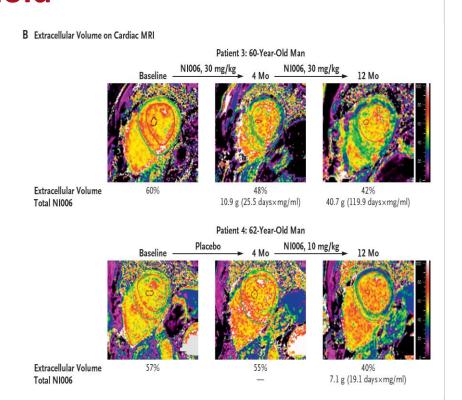
Designed to be capable of:

Binding to all types of amyloid deposits

Opsonizing the deposits and promoting macrophage-mediated amyloid clearance

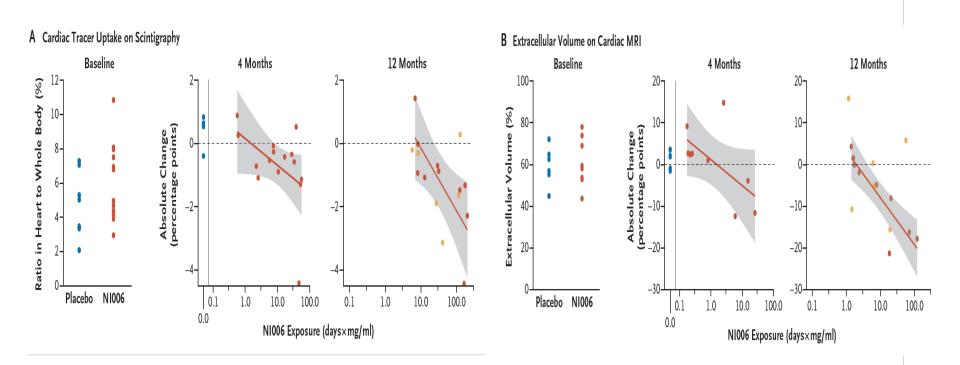
Binding complement to enhance phagocytosis of amyloid



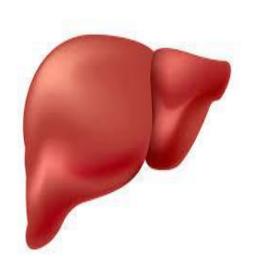

	•	4-	
Organ	AT-02 median (n)	PBS median (n)	Mann- Whitney Sig.
Liver	2.2 (n=13)	3.1 (<i>n</i> =10)	p=0.0029
Spleen	2.7 (n=13)	3.35 (n=10)	p=0.0023
Kidney	2.2 (n=13)	3.6 (n=9)	p<0.0001
Heart	0.9 (n=13)	1.8 (n=11)	p=0.0017

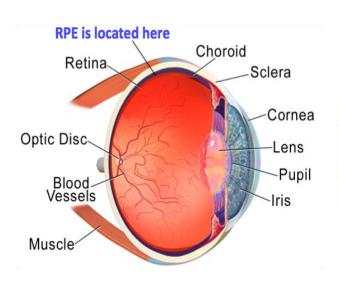
Wall et al. *ISA* 2022

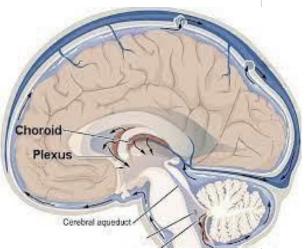
Phase 1 Trial of Antibody NI006 for Depletion of Cardiac Transthyretin Amyloid



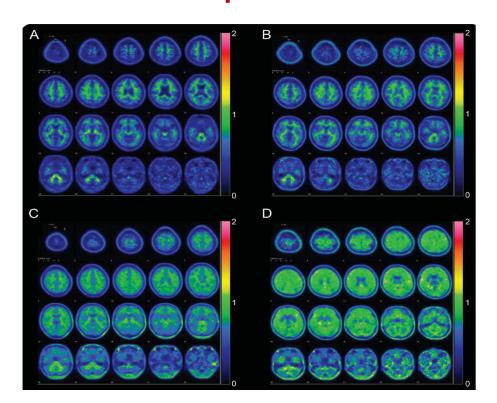
Phase 1 Trial of Antibody NI006 for Depletion of Cardiac Transthyretin Amyloid


Sources of TTR Production




Liver

Choroid Plexus



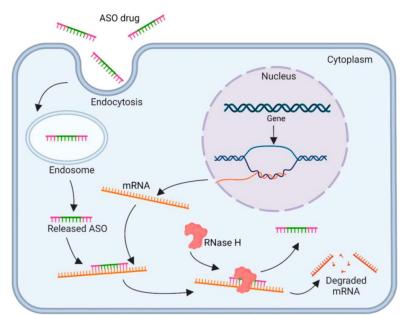
Will an emerging phenotype in the CNS influence our choice of therapies?

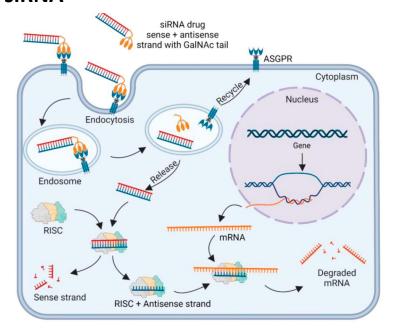
Drug	Crosses Blood Brain Barrier
Diflunisal	Very little
Tafamidis	Yes
Acoramidis	No
Patisiran	No
Vutrisiran	No
Eplontersen	No

Risk of subdural hematoma in cardiac amyloidosis

	Cardiac Amyloidosis (n=515)	Without Cardiac Amyloidosis (n=1,912,760)
Subdural Hematoma	15 (3.1%)	6389 (0.33%)
No Subdural Hematoma	500 (96.9%)	1,906,371 (99.7%)

Presence of cardiac amyloidosis was associated with a **9.6-fold higher risk** of SDH (OR 9.6, 95% confidence interval 5.8-15.7).


- Elucidation of the biology mechanism of disease development has led to several effective therapies for transthyretin amyloidosis.
- Ongoing clinical trials will provide invaluable insights in the safety and efficacy of novel agents for ATTR-CA.
- Providers and patients will be in an enviable position of choosing among available therapies, unfortunately without much data to guide selection.
- Neurologic and ocular manifestations of ATTR amyloidosis are the next frontier for therapeutic drug development.


Anti-Sense Oligonucleotides (ASO) and small Interfering RNA (siRNA) mediated TTR mRNA degradation.

siRNA

Pharmacol Rev. 2023 Dec 15;76(1):49-89.

